Skip to content

Continuous

fenbux.univariate.Normal

Normal distribution.

Parameters:

Name Type Description Default
mean ArrayLike

Mean of the distribution.

0.0
sd ArrayLike

Standard deviation of the distribution.

0.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from jax import vmap
>>> from fenbux import logpdf
>>> from fenbux.univariate import Normal
>>> dist = Normal(0.0, jnp.ones((10, )))

fenbux.univariate.Uniform

Uniform distribution. X ~ Uniform(lower, upper)

Parameters:

Name Type Description Default
lower PyTree

Lower bound of the distribution.

0.0
upper PyTree

Upper bound of the distribution.

1.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Uniform
>>> dist = Uniform(0.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.Logistic

Logistic distribution. X ~ Logistic(μ, σ)

Parameters:

Name Type Description Default
loc ArrayLike

Loc of the distribution.

0.0
scale ArrayLike

Scale of the distribution.

1.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Logistic
>>> dist = Logistic(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.LogNormal

LogNormal distribution. X ~ LogNormal(μ, σ)

Parameters:

Name Type Description Default
mean ArrayLike

Mean of the distribution.

0.0
sd ArrayLike

Standard deviation of the distribution.

1.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import LogNormal
>>> dist = LogNormal(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.Exponential

Exponential distribution.

Parameters:

Name Type Description Default
rate PyTree

Rate parameter.

1.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Exponential
>>> dist = Exponential(1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.Beta

Beta distribution.

Parameters:

Name Type Description Default
a PyTreeVar

Shape parameter a.

0.0
b PyTreeVar

Shape parameter b.

0.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Beta
>>> dist = Beta(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.Gamma

Gamma distribution.

X ~ Gamma(shape, rate)

Parameters:

Name Type Description Default
shape PyTree

Shape parameter of the distribution.

0.0
rate PyTree

Rate parameter of the distribution.

0.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Gamma
>>> dist = Gamma(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.Chisquare

Chisquare distribution.

Parameters:

Name Type Description Default
df ArrayLike

Degrees of freedom.

0.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Chisquare
>>> dist = Chisquare(1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.F

F distribution.

Parameters:

Name Type Description Default
dfn PyTree

Degrees of freedom in the numerator.

required
dfd PyTree

Degrees of freedom in the denominator.

required
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import F
>>> dist = F(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.StudentT

Student's t distribution.

Parameters:

Name Type Description Default
df PyTree

Degrees of freedom.

1.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import StudentT
>>> dist = StudentT(1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.Weibull

Weibull distribution.

X ~ Weibull(shape, scale)

Parameters:

Name Type Description Default
shape PyTree

Shape parameter of the distribution.

0.0
scale PyTree

Scale parameter of the distribution.

0.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Weibull
>>> dist = WeiBull(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.Pareto

Pareto distribution.

X ~ Pareto(shape, scale)

Parameters:

Name Type Description Default
shape PyTree

Shape parameter of the distribution.

0.0
scale PyTree

Scale parameter of the distribution.

0.0
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Pareto
>>> dist = Pareto(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.Wald

Wald distribution.

X ~ Wald(mu)

Parameters:

Name Type Description Default
mu PyTree

Mean parameter of the distribution.

required
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Wald
>>> dist = Wald(1.0)
>>> logpdf(dist, jnp.ones((10, )))

fenbux.univariate.Cauchy

Cauchy distribution.

Parameters:

Name Type Description Default
loc PyTreeVar

Location parameter of the distribution.

required
scale PyTreeVar

Scale parameter of the distribution.

required
dtype jax.numpy.dtype

dtype of the distribution, default jnp.float_.

<class 'jax.numpy.float64'>
use_batch bool

Whether to use with vmap. Default False.

False

Examples:

>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Cauchy
>>> dist = Cauchy(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))