Continuous
fenbux.univariate.Normal
Normal distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean |
ArrayLike |
Mean of the distribution. |
0.0 |
sd |
ArrayLike |
Standard deviation of the distribution. |
0.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from jax import vmap
>>> from fenbux import logpdf
>>> from fenbux.univariate import Normal
>>> dist = Normal(0.0, jnp.ones((10, )))
fenbux.univariate.Uniform
Uniform distribution. X ~ Uniform(lower, upper)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lower |
PyTree |
Lower bound of the distribution. |
0.0 |
upper |
PyTree |
Upper bound of the distribution. |
1.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Uniform
>>> dist = Uniform(0.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.Logistic
Logistic distribution. X ~ Logistic(μ, σ)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
loc |
ArrayLike |
Loc of the distribution. |
0.0 |
scale |
ArrayLike |
Scale of the distribution. |
1.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Logistic
>>> dist = Logistic(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.LogNormal
LogNormal distribution. X ~ LogNormal(μ, σ)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean |
ArrayLike |
Mean of the distribution. |
0.0 |
sd |
ArrayLike |
Standard deviation of the distribution. |
1.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import LogNormal
>>> dist = LogNormal(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.Exponential
Exponential distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rate |
PyTree |
Rate parameter. |
1.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Exponential
>>> dist = Exponential(1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.Beta
Beta distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a |
PyTreeVar |
Shape parameter a. |
0.0 |
b |
PyTreeVar |
Shape parameter b. |
0.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Beta
>>> dist = Beta(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.Gamma
Gamma distribution.
X ~ Gamma(shape, rate)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
shape |
PyTree |
Shape parameter of the distribution. |
0.0 |
rate |
PyTree |
Rate parameter of the distribution. |
0.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Gamma
>>> dist = Gamma(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.Chisquare
Chisquare distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
ArrayLike |
Degrees of freedom. |
0.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Chisquare
>>> dist = Chisquare(1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.F
F distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dfn |
PyTree |
Degrees of freedom in the numerator. |
required |
dfd |
PyTree |
Degrees of freedom in the denominator. |
required |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import F
>>> dist = F(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.StudentT
Student's t distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
PyTree |
Degrees of freedom. |
1.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import StudentT
>>> dist = StudentT(1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.Weibull
Weibull distribution.
X ~ Weibull(shape, scale)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
shape |
PyTree |
Shape parameter of the distribution. |
0.0 |
scale |
PyTree |
Scale parameter of the distribution. |
0.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Weibull
>>> dist = WeiBull(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.Pareto
Pareto distribution.
X ~ Pareto(shape, scale)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
shape |
PyTree |
Shape parameter of the distribution. |
0.0 |
scale |
PyTree |
Scale parameter of the distribution. |
0.0 |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Pareto
>>> dist = Pareto(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.Wald
Wald distribution.
X ~ Wald(mu)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu |
PyTree |
Mean parameter of the distribution. |
required |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Wald
>>> dist = Wald(1.0)
>>> logpdf(dist, jnp.ones((10, )))
fenbux.univariate.Cauchy
Cauchy distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
loc |
PyTreeVar |
Location parameter of the distribution. |
required |
scale |
PyTreeVar |
Scale parameter of the distribution. |
required |
dtype |
jax.numpy.dtype |
dtype of the distribution, default jnp.float_. |
<class 'jax.numpy.float64'> |
use_batch |
bool |
Whether to use with vmap. Default False. |
False |
Examples:
>>> import jax.numpy as jnp
>>> from fenbux import logpdf
>>> from fenbux.univariate import Cauchy
>>> dist = Cauchy(1.0, 1.0)
>>> logpdf(dist, jnp.ones((10, )))