Correlations API¤
stamox.correlation.cor(x: ArrayLike, y: Optional[ArrayLike] = None, axis: int = 0, method: str = 'pearson') -> ArrayLike
¤
    Calculates correlation between two arrays.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
x | 
        ArrayLike | 
        The first array.  | 
        required | 
y | 
        Optional[ArrayLike] | 
        The second array. Defaults to None.  | 
        None | 
      
axis | 
        int | 
        Axis along which the correlation is calculated. Defaults to 0.  | 
        0 | 
      
method | 
        str | 
        Method used for calculating correlation. Defaults to "pearson".  | 
        'pearson' | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      Correlation between two arrays.  | 
    
Exceptions:
| Type | Description | 
|---|---|
NotImplementedError | 
        If the specified method is not supported.  | 
      
Examples:
>>> import jax.numpy as jnp
>>> from stamox.functions import cor
>>> x = jnp.array([1, 2, 3, 4, 5])
>>> y = jnp.array([5, 6, 7, 8, 7])
>>> cor(x, y)
Array(0.8320503, dtype=float32)
stamox.correlation.pearsonr(x: ArrayLike, y: Optional[ArrayLike] = None, axis: int = 0) -> ArrayLike
¤
    Computes Pearson correlation coefficient for two arrays.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
x | 
        ArrayLike | 
        An array-like object containing the first set of data.  | 
        required | 
y | 
        Optional[ArrayLike] | 
        An optional array-like object containing the second set of data. If not  | 
        None | 
      
axis | 
        int | 
        The axis along which the correlation coefficient should be computed.  | 
        0 | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      An array-like object containing the Pearson correlation coefficient.  | 
    
Examples:
>>> import jax.numpy as jnp
>>> from stamox.functions import pearsonr
>>> x = jnp.array([1, 2, 3, 4, 5])
>>> y = jnp.array([5, 6, 7, 8, 7])
>>> pearsonr(x, y)
Array(0.8320503, dtype=float32)
stamox.correlation.spearmanr(x: ArrayLike, y: Optional[ArrayLike] = None, axis: int = 0) -> ArrayLike
¤
    Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
x | 
        ArrayLike | 
        An array of values.  | 
        required | 
y | 
        Optional[ArrayLike] | 
        An array of values. Defaults to None.  | 
        None | 
      
axis | 
        int | 
        The axis along which to calculate. Defaults to 0.  | 
        0 | 
      
Exceptions:
| Type | Description | 
|---|---|
ValueError | 
        If the supplied axis argument is greater than 1 or if the number of dimensions of the array is greater than 2.  | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      A array-like containing the Spearman rank-order correlation coefficient and the p-value to test for non-correlation.  | 
    
Examples:
>>> import jax.numpy as jnp
>>> from stamox.functions import spearmanr
>>> x = jnp.array([1, 2, 3, 4, 5])
>>> y = jnp.array([5, 6, 7, 8, 7])
>>> spearmanr(x, y)
Array(0.8207823038101196, dtype=float32)