Beta Distribution¤
stamox.distribution.pbeta(q: Union[Float, ArrayLike], a: Union[Float, ArrayLike], b: Union[Float, ArrayLike], lower_tail = True, log_prob = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Computes the cumulative distribution function of the beta distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
q | 
        Union[Float, ArrayLike] | 
        Quantiles.  | 
        required | 
a | 
        Union[Float, ArrayLike] | 
        Shape parameter.  | 
        required | 
b | 
        Union[Float, ArrayLike] | 
        Shape parameter.  | 
        required | 
lower_tail | 
        bool | 
        If True (default), probabilities are P[X ≤ x], otherwise, P[X > x].  | 
        True | 
      
log_prob | 
        bool | 
        If True, probabilities are given as log(P).  | 
        False | 
      
dtype | 
        jnp.dtype | 
        The dtype of the output. Defaults to None.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The probability or log of the probability for each quantile.  | 
    
Examples:
>>> q = jnp.array([0.1, 0.5, 0.9])
>>> a = 2.0
>>> b = 3.0
>>> pbeta(q, a, b)
Array([0.05230004, 0.68749976, 0.9963    ], dtype=float32)
stamox.distribution.qbeta(p: Union[Float, ArrayLike], a: Union[Float, ArrayLike], b: Union[Float, ArrayLike], lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Computes the quantile of beta distribution function.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
p | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the quantile.  | 
        required | 
a | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the alpha parameter.  | 
        required | 
b | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the beta parameter.  | 
        required | 
lower_tail | 
        bool | 
        A boolean indicating whether to compute the lower tail of the  | 
        True | 
      
log_prob | 
        bool | 
        A boolean indicating whether to compute the log probability  | 
        False | 
      
dtype | 
        The dtype of the output. Defaults to None.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The value of the beta distribution at the given quantile.  | 
    
Examples:
>>> qbeta(0.5, 2, 3)
Array(0.38572744, dtype=float32)
stamox.distribution.dbeta(x: Union[Float, ArrayLike], a: Union[Float, ArrayLike], b: Union[Float, ArrayLike], lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Calculates the probability density function of the beta distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
x | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the value(s) at which to evaluate the PDF.  | 
        required | 
a | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the shape parameter of the beta distribution.  | 
        required | 
b | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the scale parameter of the beta distribution.  | 
        required | 
lower_tail | 
        bool | 
        A boolean indicating whether to calculate the lower tail (default True).  | 
        True | 
      
log_prob | 
        bool | 
        A boolean indicating whether to return the logarithm of the PDF (default False).  | 
        False | 
      
dtype | 
        The dtype of the output. Defaults to None.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The probability density function of the beta distribution evaluated at x.  | 
    
Examples:
>>> dbeta(0.5, 2, 3, lower_tail=True, log_prob=False)
Array(1.4999996, dtype=float32, weak_type=True)
stamox.distribution.rbeta(key: Union[jax.Array, jax._src.prng.PRNGKeyArray], sample_shape: Optional[Sequence[int]] = None, a: Union[Float, ArrayLike] = None, b: Union[Float, ArrayLike] = None, lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Generates random numbers from the Beta distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
key | 
        Union[jax.Array, jax._src.prng.PRNGKeyArray] | 
        A PRNGKey used for random number generation.  | 
        required | 
sample_shape | 
        Optional[Sequence[int]] | 
        An optional shape for the output samples.  | 
        None | 
      
a | 
        Union[Float, ArrayLike] | 
        The shape parameter of the Beta distribution. Can be either a float or an array-like object.  | 
        None | 
      
b | 
        Union[Float, ArrayLike] | 
        The scale parameter of the Beta distribution. Can be either a float or an array-like object.  | 
        None | 
      
lower_tail | 
        bool | 
        Whether to return the lower tail probability (defaults to True).  | 
        True | 
      
log_prob | 
        bool | 
        Whether to return the log probability (defaults to False).  | 
        False | 
      
dtype | 
        The dtype of the output. Defaults to jnp.float32.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      Random numbers from the Beta distribution.  | 
    
Examples:
>>> key = jax.random.PRNGKey(0)
>>> rbeta(key, sample_shape=(3,), a=2, b=3)
Array([0.02809353, 0.13760717, 0.49360353], dtype=float32)