Beta Distribution¤
stamox.distribution.pbeta(q: Union[Float, ArrayLike], a: Union[Float, ArrayLike], b: Union[Float, ArrayLike], lower_tail = True, log_prob = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Computes the cumulative distribution function of the beta distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q |
Union[Float, ArrayLike] |
Quantiles. |
required |
a |
Union[Float, ArrayLike] |
Shape parameter. |
required |
b |
Union[Float, ArrayLike] |
Shape parameter. |
required |
lower_tail |
bool |
If True (default), probabilities are P[X ≤ x], otherwise, P[X > x]. |
True |
log_prob |
bool |
If True, probabilities are given as log(P). |
False |
dtype |
jnp.dtype |
The dtype of the output. Defaults to None. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The probability or log of the probability for each quantile. |
Examples:
>>> q = jnp.array([0.1, 0.5, 0.9])
>>> a = 2.0
>>> b = 3.0
>>> pbeta(q, a, b)
Array([0.05230004, 0.68749976, 0.9963 ], dtype=float32)
stamox.distribution.qbeta(p: Union[Float, ArrayLike], a: Union[Float, ArrayLike], b: Union[Float, ArrayLike], lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Computes the quantile of beta distribution function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Union[Float, ArrayLike] |
A float or array-like object representing the quantile. |
required |
a |
Union[Float, ArrayLike] |
A float or array-like object representing the alpha parameter. |
required |
b |
Union[Float, ArrayLike] |
A float or array-like object representing the beta parameter. |
required |
lower_tail |
bool |
A boolean indicating whether to compute the lower tail of the |
True |
log_prob |
bool |
A boolean indicating whether to compute the log probability |
False |
dtype |
The dtype of the output. Defaults to None. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The value of the beta distribution at the given quantile. |
Examples:
>>> qbeta(0.5, 2, 3)
Array(0.38572744, dtype=float32)
stamox.distribution.dbeta(x: Union[Float, ArrayLike], a: Union[Float, ArrayLike], b: Union[Float, ArrayLike], lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Calculates the probability density function of the beta distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Union[Float, ArrayLike] |
A float or array-like object representing the value(s) at which to evaluate the PDF. |
required |
a |
Union[Float, ArrayLike] |
A float or array-like object representing the shape parameter of the beta distribution. |
required |
b |
Union[Float, ArrayLike] |
A float or array-like object representing the scale parameter of the beta distribution. |
required |
lower_tail |
bool |
A boolean indicating whether to calculate the lower tail (default True). |
True |
log_prob |
bool |
A boolean indicating whether to return the logarithm of the PDF (default False). |
False |
dtype |
The dtype of the output. Defaults to None. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The probability density function of the beta distribution evaluated at x. |
Examples:
>>> dbeta(0.5, 2, 3, lower_tail=True, log_prob=False)
Array(1.4999996, dtype=float32, weak_type=True)
stamox.distribution.rbeta(key: Union[jax.Array, jax._src.prng.PRNGKeyArray], sample_shape: Optional[Sequence[int]] = None, a: Union[Float, ArrayLike] = None, b: Union[Float, ArrayLike] = None, lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Generates random numbers from the Beta distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
Union[jax.Array, jax._src.prng.PRNGKeyArray] |
A PRNGKey used for random number generation. |
required |
sample_shape |
Optional[Sequence[int]] |
An optional shape for the output samples. |
None |
a |
Union[Float, ArrayLike] |
The shape parameter of the Beta distribution. Can be either a float or an array-like object. |
None |
b |
Union[Float, ArrayLike] |
The scale parameter of the Beta distribution. Can be either a float or an array-like object. |
None |
lower_tail |
bool |
Whether to return the lower tail probability (defaults to True). |
True |
log_prob |
bool |
Whether to return the log probability (defaults to False). |
False |
dtype |
The dtype of the output. Defaults to jnp.float32. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
Random numbers from the Beta distribution. |
Examples:
>>> key = jax.random.PRNGKey(0)
>>> rbeta(key, sample_shape=(3,), a=2, b=3)
Array([0.02809353, 0.13760717, 0.49360353], dtype=float32)