Binomial Distribution¤
stamox.distribution.pbinom(q: ArrayLike, size: ArrayLike, prob: ArrayLike, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Calculates the cumulative probability of a binomial distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q |
ArrayLike |
The quantiles to compute. |
required |
size |
ArrayLike |
The number of trials. |
required |
prob |
ArrayLike |
The probability of success in each trial. |
required |
lower_tail |
Bool |
If True (default), the lower tail probability is returned. |
True |
log_prob |
Bool |
If True, the logarithm of the probability is returned. |
False |
dtype |
optional |
The data type of the output array. Defaults to jnp.float_. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The cumulative probability of the binomial distribution. |
Examples:
>>> q = jnp.array([0.1, 0.5, 0.9])
>>> size = 10
>>> prob = 0.5
>>> pbinom(q, size, prob)
stamox.distribution.qbinom(p: ArrayLike, size: ArrayLike, prob: ArrayLike, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.int64'>) -> ArrayLike
¤
Computes the quantile of a binomial distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
ArrayLike |
The probability of success. |
required |
size |
ArrayLike |
The number of trials. |
required |
prob |
ArrayLike |
The probability of success in each trial. |
required |
lower_tail |
Bool |
Whether to compute the lower tail or not. Defaults to True. |
True |
log_prob |
Bool |
Whether to compute the log probability or not. Defaults to False. |
False |
dtype |
jnp.int_ |
The data type of the output array. Defaults to jnp.int_. |
<class 'jax.numpy.int64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The quantile of the binomial distribution. |
Examples:
>>> p = jnp.array([0.1, 0.5, 0.9])
>>> size = 10
>>> prob = 0.5
>>> qbinom(p, size, prob)
stamox.distribution.dbinom(q: ArrayLike, size: ArrayLike, prob: ArrayLike, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Computes the probability of a binomial distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q |
ArrayLike |
The value to compute the probability for. |
required |
size |
ArrayLike |
The number of trials in the binomial distribution. |
required |
prob |
ArrayLike |
The probability of success in each trial. |
required |
lower_tail |
Bool |
Whether to compute the lower tail probability. Defaults to True. |
True |
log_prob |
Bool |
Whether to return the logarithm of the probability. Defaults to False. |
False |
dtype |
jnp.float_ |
The data type of the output array. Defaults to jnp.float_. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The probability of the binomial distribution. |
Examples:
>>> q = jnp.array([0.1, 0.5, 0.9])
>>> size = 10
>>> prob = 0.5
>>> dbinom(q, size, prob)
stamox.distribution.rbinom(key: Union[jax.Array, jax._src.prng.PRNGKeyArray], sample_shape: Optional[Sequence[int]] = None, size: ArrayLike = None, prob: ArrayLike = None, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.int64'>) -> ArrayLike
¤
Generates random binomial samples from a given probability distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
KeyArray |
A random number generator key. |
required |
sample_shape |
Optional[Shape] |
The shape of the output array. Defaults to None. |
None |
size |
ArrayLike |
The number of trials. Defaults to None. |
None |
prob |
ArrayLike |
The probability of success for each trial. Defaults to None. |
None |
lower_tail |
Bool |
Whether to return the lower tail of the distribution. Defaults to True. |
True |
log_prob |
Bool |
Whether to return the logarithm of the probability. Defaults to False. |
False |
dtype |
jnp.float32 |
The data type of the output array. Defaults to jnp.float32. |
<class 'jax.numpy.int64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
An array containing the random binomial samples. |
Examples:
>>> key = jax.random.PRNGKey(0)
>>> sample_shape = (3, 3)
>>> size = 10
>>> prob = 0.5
>>> rbinom(key, sample_shape, size, prob)