Chisquare Distribution¤
stamox.distribution.pchisq(q: Union[Float, ArrayLike], df: Union[Int, Float, ArrayLike], lower_tail = True, log_prob = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Calculates the chi-squared probability density function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q |
Union[float, array-like] |
The value of the chi-squared variable. |
required |
df |
Union[int, float, array-like] |
The degrees of freedom. |
required |
lower_tail |
bool |
Whether to calculate the lower tail (default True). |
True |
log_prob |
bool |
Whether to return the log probability (default False). |
False |
dtype |
dtype |
The dtype of the output (default jnp.float_). |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The chi-squared probability density function. |
Examples:
>>> pchisq(2.0, 3)
Array(0.42759317, dtype=float32, weak_type=True)
stamox.distribution.qchisq(p: Union[Float, ArrayLike], df: Union[Int, Float, ArrayLike], lower_tail = True, log_prob = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Computes the inverse of the chi-squared cumulative distribution function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Union[Float, ArrayLike] |
Probability value or array of probability values. |
required |
df |
Union[Int, Float, ArrayLike] |
Degrees of freedom. |
required |
lower_tail |
bool |
If True (default), probabilities are P[X ≤ x], otherwise, P[X > x]. |
True |
log_prob |
bool |
If True, probabilities are given as log(p). |
False |
dtype |
dtype |
The dtype of the output (default jnp.float_). |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The quantiles corresponding to the given probabilities. |
Examples:
>>> qchisq(0.95, 10)
Array(18.307034, dtype=float32)
stamox.distribution.dchisq(x: Union[Float, ArrayLike], df: Union[Int, Float, ArrayLike], lower_tail = True, log_prob = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Computes the chi-squared distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Union[Float, ArrayLike] |
A float or array-like object representing the values at which to evaluate the chi-squared distribution. |
required |
df |
Union[Int, Float, ArrayLike] |
The degrees of freedom for the chi-squared distribution. |
required |
lower_tail |
A boolean indicating whether to compute the lower tail of the chi-squared distribution (defaults to True). |
True |
|
log_prob |
A boolean indicating whether to return the log probability (defaults to False). |
False |
|
dtype |
The dtype of the output (defaults to float32). |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The chi-squared distribution evaluated at |
Examples:
>>> dchisq(2.0, 3)
Array(0.20755368, dtype=float32, weak_type=True)
stamox.distribution.rchisq(key: Union[jax.Array, jax._src.prng.PRNGKeyArray], sample_shape: Optional[Sequence[int]] = None, df: Union[Int, Float, ArrayLike] = None, lower_tail = True, log_prob = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Generates random variates from the chi-squared distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
KeyArray |
Random key to generate the random numbers. |
required |
sample_shape |
Optional[Shape] |
Shape of the output array. Defaults to None. |
None |
df |
Union[Int, Float, ArrayLike] |
Degrees of freedom. Defaults to None. |
None |
lower_tail |
bool |
Whether to return the lower tail probability. Defaults to True. |
True |
log_prob |
bool |
Whether to return the log probability. Defaults to False. |
False |
dtype |
dtype |
The dtype of the output (default float_). |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
Random variates from the chi-squared distribution. |
Examples:
>>> key = jax.random.PRNGKey(0)
>>> rchisq(key, df=2)
Array(1.982825, dtype=float32)