Gamma Distribution¤
stamox.distribution.pgamma(q: Union[Float, ArrayLike], shape: Union[Float, ArrayLike] = 1.0, rate: Union[Float, ArrayLike] = 1.0, lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Computes the cumulative distribution function of the gamma distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
q | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the input to the gamma function.  | 
        required | 
shape | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the shape parameter of the gamma function.  | 
        1.0 | 
      
rate | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the rate parameter of the gamma function.  | 
        1.0 | 
      
lower_tail | 
        bool | 
        A boolean indicating whether to compute the lower tail of the gamma function.  | 
        True | 
      
log_prob | 
        bool | 
        A boolean indicating whether to compute the logarithm of the probability density function.  | 
        False | 
      
dtype | 
        The dtype of the output. Defaults to jnp.float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The CDF value of the given value or array of values.  | 
    
Examples:
>>> pgamma(1.0, 0.5, 0.5)
Array(0.6826893, dtype=float32, weak_type=True)
stamox.distribution.qgamma(p: Union[Float, ArrayLike], shape: Union[Float, ArrayLike] = 1.0, rate: Union[Float, ArrayLike] = 1.0, lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Computes the quantile of the gamma distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
p | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the quantile.  | 
        required | 
shape | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the shape parameter of the gamma distribution.  | 
        1.0 | 
      
rate | 
        Union[Float, ArrayLike] | 
        A float or array-like object representing the rate parameter of the gamma distribution.  | 
        1.0 | 
      
lower_tail | 
        bool | 
        A boolean indicating whether to compute the lower tail (default) or upper tail.  | 
        True | 
      
log_prob | 
        bool | 
        A boolean indicating whether to compute the log probability (default False).  | 
        False | 
      
dtype | 
        The dtype of the output. Defaults to float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The quantile of the gamma distribution.  | 
    
Examples:
>>> qgamma(0.5, 0.5, 0.5)
Array([0.45493677], dtype=float32)
stamox.distribution.dgamma(x: Union[Float, ArrayLike], shape: Union[Float, ArrayLike] = 1.0, rate: Union[Float, ArrayLike] = 1.0, lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Compute density of gamma distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
x | 
        Union[Float, ArrayLike] | 
        The value at which to evaluate the gamma distribution.  | 
        required | 
shape | 
        Union[Float, ArrayLike] | 
        The shape parameter of the gamma distribution. Defaults to 1.0.  | 
        1.0 | 
      
rate | 
        Union[Float, ArrayLike] | 
        The rate parameter of the gamma distribution. Defaults to 1.0.  | 
        1.0 | 
      
lower_tail | 
        bool | 
        Whether to compute the lower tail of the gamma distribution. Defaults to True.  | 
        True | 
      
log_prob | 
        bool | 
        Whether to return the log probability. Defaults to False.  | 
        False | 
      
dtype | 
        jnp.dtype | 
        The dtype of the output. Defaults to  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The density of the gamma distribution evaluated
    at   | 
    
Examples:
>>> dgamma(1.0, 0.5, 0.5)
Array(0.24197064, dtype=float32, weak_type=True)
stamox.distribution.rgamma(key, sample_shape: Optional[Sequence[int]] = None, shape: Union[Float, ArrayLike] = 1.0, rate: Union[Float, ArrayLike] = 1.0, lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Generates random gamma values.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
key | 
        A PRNGKey to use for the random number generation.  | 
        required | |
sample_shape | 
        Optional[Sequence[int]] | 
        An optional shape for the output array.  | 
        None | 
      
shape | 
        Union[Float, ArrayLike] | 
        The shape parameter of the gamma distribution.  | 
        1.0 | 
      
rate | 
        Union[Float, ArrayLike] | 
        The rate parameter of the gamma distribution.  | 
        1.0 | 
      
lower_tail | 
        bool | 
        Whether to return the lower tail of the distribution.  | 
        True | 
      
log_prob | 
        bool | 
        Whether to return the log probability of the result.  | 
        False | 
      
dtype | 
        The dtype of the output. Defaults to jnp.float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      A random gamma value or an array of random gamma values.  | 
    
Examples:
>>> rgamma(key, shape=0.5, rate=0.5)
Array(0.3384059, dtype=float32)