Gamma Distribution¤
stamox.distribution.pgamma(q: Union[Float, ArrayLike], shape: Union[Float, ArrayLike] = 1.0, rate: Union[Float, ArrayLike] = 1.0, lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Computes the cumulative distribution function of the gamma distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q |
Union[Float, ArrayLike] |
A float or array-like object representing the input to the gamma function. |
required |
shape |
Union[Float, ArrayLike] |
A float or array-like object representing the shape parameter of the gamma function. |
1.0 |
rate |
Union[Float, ArrayLike] |
A float or array-like object representing the rate parameter of the gamma function. |
1.0 |
lower_tail |
bool |
A boolean indicating whether to compute the lower tail of the gamma function. |
True |
log_prob |
bool |
A boolean indicating whether to compute the logarithm of the probability density function. |
False |
dtype |
The dtype of the output. Defaults to jnp.float_. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The CDF value of the given value or array of values. |
Examples:
>>> pgamma(1.0, 0.5, 0.5)
Array(0.6826893, dtype=float32, weak_type=True)
stamox.distribution.qgamma(p: Union[Float, ArrayLike], shape: Union[Float, ArrayLike] = 1.0, rate: Union[Float, ArrayLike] = 1.0, lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Computes the quantile of the gamma distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Union[Float, ArrayLike] |
A float or array-like object representing the quantile. |
required |
shape |
Union[Float, ArrayLike] |
A float or array-like object representing the shape parameter of the gamma distribution. |
1.0 |
rate |
Union[Float, ArrayLike] |
A float or array-like object representing the rate parameter of the gamma distribution. |
1.0 |
lower_tail |
bool |
A boolean indicating whether to compute the lower tail (default) or upper tail. |
True |
log_prob |
bool |
A boolean indicating whether to compute the log probability (default False). |
False |
dtype |
The dtype of the output. Defaults to float_. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The quantile of the gamma distribution. |
Examples:
>>> qgamma(0.5, 0.5, 0.5)
Array([0.45493677], dtype=float32)
stamox.distribution.dgamma(x: Union[Float, ArrayLike], shape: Union[Float, ArrayLike] = 1.0, rate: Union[Float, ArrayLike] = 1.0, lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Compute density of gamma distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Union[Float, ArrayLike] |
The value at which to evaluate the gamma distribution. |
required |
shape |
Union[Float, ArrayLike] |
The shape parameter of the gamma distribution. Defaults to 1.0. |
1.0 |
rate |
Union[Float, ArrayLike] |
The rate parameter of the gamma distribution. Defaults to 1.0. |
1.0 |
lower_tail |
bool |
Whether to compute the lower tail of the gamma distribution. Defaults to True. |
True |
log_prob |
bool |
Whether to return the log probability. Defaults to False. |
False |
dtype |
jnp.dtype |
The dtype of the output. Defaults to |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The density of the gamma distribution evaluated
at |
Examples:
>>> dgamma(1.0, 0.5, 0.5)
Array(0.24197064, dtype=float32, weak_type=True)
stamox.distribution.rgamma(key, sample_shape: Optional[Sequence[int]] = None, shape: Union[Float, ArrayLike] = 1.0, rate: Union[Float, ArrayLike] = 1.0, lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Generates random gamma values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
A PRNGKey to use for the random number generation. |
required | |
sample_shape |
Optional[Sequence[int]] |
An optional shape for the output array. |
None |
shape |
Union[Float, ArrayLike] |
The shape parameter of the gamma distribution. |
1.0 |
rate |
Union[Float, ArrayLike] |
The rate parameter of the gamma distribution. |
1.0 |
lower_tail |
bool |
Whether to return the lower tail of the distribution. |
True |
log_prob |
bool |
Whether to return the log probability of the result. |
False |
dtype |
The dtype of the output. Defaults to jnp.float_. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
A random gamma value or an array of random gamma values. |
Examples:
>>> rgamma(key, shape=0.5, rate=0.5)
Array(0.3384059, dtype=float32)