Pareto Distribution¤
stamox.distribution.ppareto(q: Union[Float, ArrayLike], scale: Union[Float, ArrayLike], alpha: Union[Float, ArrayLike], lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Computes the cumulative distribution function of the Pareto distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
q | 
        Union[Float, ArrayLike] | 
        The value at which to evaluate the CDF.  | 
        required | 
scale | 
        Union[Float, ArrayLike] | 
        The scale parameter of the Pareto distribution.  | 
        required | 
alpha | 
        Union[Float, ArrayLike] | 
        The shape parameter of the Pareto distribution.  | 
        required | 
lower_tail | 
        bool | 
        Whether to compute the lower tail of the CDF. Defaults to True.  | 
        True | 
      
log_prob | 
        bool | 
        Whether to return the log probability. Defaults to False.  | 
        False | 
      
dtype | 
        jnp.dtype | 
        The dtype of the output. Defaults to jnp.float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The cumulative distribution function of the Pareto distribution evaluated at   | 
    
Examples:
>>> ppareto(0.2, 0.1, 2.0)
Array(0.75, dtype=float32, weak_type=True)
stamox.distribution.qpareto(p: Union[Float, ArrayLike], scale: Union[Float, ArrayLike], alpha: Union[Float, ArrayLike], lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Computes the quantile function of the Pareto distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
p | 
        Union[Float, ArrayLike] | 
        Quantiles to compute.  | 
        required | 
scale | 
        Union[Float, ArrayLike] | 
        Scale parameter of the Pareto distribution.  | 
        required | 
alpha | 
        Union[Float, ArrayLike] | 
        Shape parameter of the Pareto distribution.  | 
        required | 
lower_tail | 
        Bool | 
        Whether to compute the lower tail probability. Defaults to True.  | 
        True | 
      
log_prob | 
        Bool | 
        Whether to compute the log probability. Defaults to False.  | 
        False | 
      
dtype | 
        jnp.dtype | 
        The dtype of the output. Defaults to jnp.float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The quantiles of the Pareto distribution.  | 
    
Examples:
>>> qpareto(0.2, 0.1, 2.0)
Array([0.1118034], dtype=float32, weak_type=True)
stamox.distribution.dpareto(x: Union[Float, ArrayLike], scale: Union[Float, ArrayLike], alpha: Union[Float, ArrayLike], lower_tail = True, log_prob = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Computes the density of the Pareto distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
x | 
        Union[Float, ArrayLike] | 
        The value at which to evaluate the density.  | 
        required | 
scale | 
        Union[Float, ArrayLike] | 
        The scale parameter of the Pareto distribution.  | 
        required | 
alpha | 
        Union[Float, ArrayLike] | 
        The shape parameter of the Pareto distribution.  | 
        required | 
lower_tail | 
        bool | 
        Whether to compute the lower tail probability. Defaults to True.  | 
        True | 
      
log_prob | 
        bool | 
        Whether to return the log probability. Defaults to False.  | 
        False | 
      
dtype | 
        jnp.dtype | 
        The dtype of the output. Defaults to jnp.float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The density of the Pareto distribution evaluated at   | 
    
Examples:
>>> dpareto(0.2, 0.1, 2.0)
Array([2.4999998], dtype=float32, weak_type=True)
stamox.distribution.rpareto(key: PRNGKeyArray, sample_shape: Optional[Sequence[int]] = None, scale: Union[Float, ArrayLike] = None, alpha: Union[Float, ArrayLike] = None, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Generate random variable following a Pareto distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
key | 
        KeyArray | 
        A random number generator key.  | 
        required | 
sample_shape | 
        Optional[Shape] | 
        The shape of the samples to be drawn. Defaults to None.  | 
        None | 
      
scale | 
        Union[Float, ArrayLike] | 
        The scale parameter of the Pareto distribution.  | 
        None | 
      
alpha | 
        Union[Float, ArrayLike] | 
        The shape parameter of the Pareto distribution.  | 
        None | 
      
lower_tail | 
        Bool | 
        Whether to calculate the lower tail probability. Defaults to True.  | 
        True | 
      
log_prob | 
        Bool | 
        Whether to return the log probability. Defaults to False.  | 
        False | 
      
dtype | 
        jnp.dtype | 
        The dtype of the output. Defaults to jnp.float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      random variable following a Pareto distribution.  | 
    
Examples:
>>> rpareto(jax.random.PRNGKey(0), sample_shape=(2, 3), scale=0.1, alpha=2.0)
Array([[0.15330292, 0.10539087, 0.19686179],
        [0.30740616, 0.15743963, 0.13524036]], dtype=float32)