Skip to content

Pareto Distribution¤

stamox.distribution.ppareto(q: Union[Float, ArrayLike], scale: Union[Float, ArrayLike], alpha: Union[Float, ArrayLike], lower_tail: bool = True, log_prob: bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike ¤

Computes the cumulative distribution function of the Pareto distribution.

Parameters:

Name Type Description Default
q Union[Float, ArrayLike]

The value at which to evaluate the CDF.

required
scale Union[Float, ArrayLike]

The scale parameter of the Pareto distribution.

required
alpha Union[Float, ArrayLike]

The shape parameter of the Pareto distribution.

required
lower_tail bool

Whether to compute the lower tail of the CDF. Defaults to True.

True
log_prob bool

Whether to return the log probability. Defaults to False.

False
dtype jnp.dtype

The dtype of the output. Defaults to jnp.float_.

<class 'jax.numpy.float64'>

Returns:

Type Description
ArrayLike

The cumulative distribution function of the Pareto distribution evaluated at q.

Examples:

>>> ppareto(0.2, 0.1, 2.0)
Array(0.75, dtype=float32, weak_type=True)

stamox.distribution.qpareto(p: Union[Float, ArrayLike], scale: Union[Float, ArrayLike], alpha: Union[Float, ArrayLike], lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike ¤

Computes the quantile function of the Pareto distribution.

Parameters:

Name Type Description Default
p Union[Float, ArrayLike]

Quantiles to compute.

required
scale Union[Float, ArrayLike]

Scale parameter of the Pareto distribution.

required
alpha Union[Float, ArrayLike]

Shape parameter of the Pareto distribution.

required
lower_tail Bool

Whether to compute the lower tail probability. Defaults to True.

True
log_prob Bool

Whether to compute the log probability. Defaults to False.

False
dtype jnp.dtype

The dtype of the output. Defaults to jnp.float_.

<class 'jax.numpy.float64'>

Returns:

Type Description
ArrayLike

The quantiles of the Pareto distribution.

Examples:

>>> qpareto(0.2, 0.1, 2.0)
Array([0.1118034], dtype=float32, weak_type=True)

stamox.distribution.dpareto(x: Union[Float, ArrayLike], scale: Union[Float, ArrayLike], alpha: Union[Float, ArrayLike], lower_tail = True, log_prob = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike ¤

Computes the density of the Pareto distribution.

Parameters:

Name Type Description Default
x Union[Float, ArrayLike]

The value at which to evaluate the density.

required
scale Union[Float, ArrayLike]

The scale parameter of the Pareto distribution.

required
alpha Union[Float, ArrayLike]

The shape parameter of the Pareto distribution.

required
lower_tail bool

Whether to compute the lower tail probability. Defaults to True.

True
log_prob bool

Whether to return the log probability. Defaults to False.

False
dtype jnp.dtype

The dtype of the output. Defaults to jnp.float_.

<class 'jax.numpy.float64'>

Returns:

Type Description
ArrayLike

The density of the Pareto distribution evaluated at x.

Examples:

>>> dpareto(0.2, 0.1, 2.0)
Array([2.4999998], dtype=float32, weak_type=True)

stamox.distribution.rpareto(key: PRNGKeyArray, sample_shape: Optional[Sequence[int]] = None, scale: Union[Float, ArrayLike] = None, alpha: Union[Float, ArrayLike] = None, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike ¤

Generate random variable following a Pareto distribution.

Parameters:

Name Type Description Default
key KeyArray

A random number generator key.

required
sample_shape Optional[Shape]

The shape of the samples to be drawn. Defaults to None.

None
scale Union[Float, ArrayLike]

The scale parameter of the Pareto distribution.

None
alpha Union[Float, ArrayLike]

The shape parameter of the Pareto distribution.

None
lower_tail Bool

Whether to calculate the lower tail probability. Defaults to True.

True
log_prob Bool

Whether to return the log probability. Defaults to False.

False
dtype jnp.dtype

The dtype of the output. Defaults to jnp.float_.

<class 'jax.numpy.float64'>

Returns:

Type Description
ArrayLike

random variable following a Pareto distribution.

Examples:

>>> rpareto(jax.random.PRNGKey(0), sample_shape=(2, 3), scale=0.1, alpha=2.0)
Array([[0.15330292, 0.10539087, 0.19686179],
        [0.30740616, 0.15743963, 0.13524036]], dtype=float32)