Uniform Distribution¤
stamox.distribution.punif(q: Union[Float, ArrayLike], mini: Union[Float, ArrayLike] = 0.0, maxi: Union[Float, ArrayLike] = 1.0, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Computes the cumulative distribution function of the uniform distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
q | 
        Union[Float, ArrayLike] | 
        The value at which to evaluate the CDF.  | 
        required | 
mini | 
        Union[Float, ArrayLike] | 
        The minimum value of the uniform distribution. Defaults to 0.0.  | 
        0.0 | 
      
maxi | 
        Union[Float, ArrayLike] | 
        The maximum value of the uniform distribution. Defaults to 1.0.  | 
        1.0 | 
      
lower_tail | 
        bool | 
        Whether to compute the lower tail of the CDF. Defaults to True.  | 
        True | 
      
log_prob | 
        bool | 
        Whether to return the log probability. Defaults to False.  | 
        False | 
      
dtype | 
        jnp.dtype | 
        The dtype of the output. Defaults to jnp.float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The cumulative distribution function of the uniform distribution evaluated at   | 
    
Examples:
>>> punif(0.5)
Array(0.5, dtype=float32, weak_type=True)
stamox.distribution.qunif(p: Union[Float, ArrayLike], mini: Union[Float, ArrayLike] = 0.0, maxi: Union[Float, ArrayLike] = 1.0, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Computes the quantile function of a uniform distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
p | 
        Union[Float, ArrayLike] | 
        Quantiles to compute.  | 
        required | 
mini | 
        Union[Float, Array] | 
        Lower bound of the uniform distribution. Defaults to 0.0.  | 
        0.0 | 
      
maxi | 
        Union[Float, Array] | 
        Upper bound of the uniform distribution. Defaults to 1.0.  | 
        1.0 | 
      
lower_tail | 
        Bool | 
        Whether to compute the lower tail or not. Defaults to True.  | 
        True | 
      
log_prob | 
        Bool | 
        Whether to compute the log probability or not. Defaults to False.  | 
        False | 
      
dtype | 
        jnp.dtype | 
        The dtype of the output. Defaults to jnp.float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The quantiles of the uniform distribution.  | 
    
Examples:
>>> qunif(0.5)
Array(0.5, dtype=float32, weak_type=True)
stamox.distribution.dunif(x: Union[Float, ArrayLike], mini: Union[Float, ArrayLike] = 0.0, maxi: Union[Float, ArrayLike] = 1.0, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Calculates the probability density function of a uniform distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
x | 
        Union[Float, ArrayLike] | 
        The value or array of values for which to calculate the probability density.  | 
        required | 
mini | 
        Union[Float, Array] | 
        The lower bound of the uniform distribution. Defaults to 0.0.  | 
        0.0 | 
      
maxi | 
        Union[Float, Array] | 
        The upper bound of the uniform distribution. Defaults to 1.0.  | 
        1.0 | 
      
lower_tail | 
        Bool | 
        Whether to calculate the lower tail probability. Defaults to True.  | 
        True | 
      
log_prob | 
        Bool | 
        Whether to return the log probability. Defaults to False.  | 
        False | 
      
dtype | 
        jnp.dtype | 
        The dtype of the output. Defaults to jnp.float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      The probability density of the given value(s).  | 
    
Examples:
>>> dunif(0.5)
Array(1., dtype=float32, weak_type=True)
stamox.distribution.runif(key: Union[jax.Array, jax._src.prng.PRNGKeyArray], sample_shape: Optional[Sequence[int]] = None, mini: Union[Float, ArrayLike] = 0.0, maxi: Union[Float, ArrayLike] = 1.0, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
    Generates random numbers from a uniform distribution.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
key | 
        Union[jax.Array, jax._src.prng.PRNGKeyArray] | 
        A PRNGKey to use for generating the random numbers.  | 
        required | 
sample_shape | 
        Optional[Sequence[int]] | 
        The shape of the output array.  | 
        None | 
      
mini | 
        Union[Float, ArrayLike] | 
        The minimum value of the uniform distribution.  | 
        0.0 | 
      
maxi | 
        Union[Float, ArrayLike] | 
        The maximum value of the uniform distribution.  | 
        1.0 | 
      
lower_tail | 
        Bool | 
        Whether to generate values from the lower tail of the distribution.  | 
        True | 
      
log_prob | 
        Bool | 
        Whether to return the log probability of the generated values.  | 
        False | 
      
dtype | 
        The dtype of the output. Defaults to jnp.float_.  | 
        <class 'jax.numpy.float64'> | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      An array of random numbers from a uniform distribution.  | 
    
Examples:
>>> runif(key, sample_shape=(2, 3))
Array([[0.57450044, 0.09968603, 0.7419659 ],
        [0.8941783 , 0.59656656, 0.45325184]], dtype=float32)