Uniform Distribution¤
stamox.distribution.punif(q: Union[Float, ArrayLike], mini: Union[Float, ArrayLike] = 0.0, maxi: Union[Float, ArrayLike] = 1.0, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Computes the cumulative distribution function of the uniform distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q |
Union[Float, ArrayLike] |
The value at which to evaluate the CDF. |
required |
mini |
Union[Float, ArrayLike] |
The minimum value of the uniform distribution. Defaults to 0.0. |
0.0 |
maxi |
Union[Float, ArrayLike] |
The maximum value of the uniform distribution. Defaults to 1.0. |
1.0 |
lower_tail |
bool |
Whether to compute the lower tail of the CDF. Defaults to True. |
True |
log_prob |
bool |
Whether to return the log probability. Defaults to False. |
False |
dtype |
jnp.dtype |
The dtype of the output. Defaults to jnp.float_. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The cumulative distribution function of the uniform distribution evaluated at |
Examples:
>>> punif(0.5)
Array(0.5, dtype=float32, weak_type=True)
stamox.distribution.qunif(p: Union[Float, ArrayLike], mini: Union[Float, ArrayLike] = 0.0, maxi: Union[Float, ArrayLike] = 1.0, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Computes the quantile function of a uniform distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Union[Float, ArrayLike] |
Quantiles to compute. |
required |
mini |
Union[Float, Array] |
Lower bound of the uniform distribution. Defaults to 0.0. |
0.0 |
maxi |
Union[Float, Array] |
Upper bound of the uniform distribution. Defaults to 1.0. |
1.0 |
lower_tail |
Bool |
Whether to compute the lower tail or not. Defaults to True. |
True |
log_prob |
Bool |
Whether to compute the log probability or not. Defaults to False. |
False |
dtype |
jnp.dtype |
The dtype of the output. Defaults to jnp.float_. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The quantiles of the uniform distribution. |
Examples:
>>> qunif(0.5)
Array(0.5, dtype=float32, weak_type=True)
stamox.distribution.dunif(x: Union[Float, ArrayLike], mini: Union[Float, ArrayLike] = 0.0, maxi: Union[Float, ArrayLike] = 1.0, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Calculates the probability density function of a uniform distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Union[Float, ArrayLike] |
The value or array of values for which to calculate the probability density. |
required |
mini |
Union[Float, Array] |
The lower bound of the uniform distribution. Defaults to 0.0. |
0.0 |
maxi |
Union[Float, Array] |
The upper bound of the uniform distribution. Defaults to 1.0. |
1.0 |
lower_tail |
Bool |
Whether to calculate the lower tail probability. Defaults to True. |
True |
log_prob |
Bool |
Whether to return the log probability. Defaults to False. |
False |
dtype |
jnp.dtype |
The dtype of the output. Defaults to jnp.float_. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
The probability density of the given value(s). |
Examples:
>>> dunif(0.5)
Array(1., dtype=float32, weak_type=True)
stamox.distribution.runif(key: Union[jax.Array, jax._src.prng.PRNGKeyArray], sample_shape: Optional[Sequence[int]] = None, mini: Union[Float, ArrayLike] = 0.0, maxi: Union[Float, ArrayLike] = 1.0, lower_tail: Bool = True, log_prob: Bool = False, dtype = <class 'jax.numpy.float64'>) -> ArrayLike
¤
Generates random numbers from a uniform distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
Union[jax.Array, jax._src.prng.PRNGKeyArray] |
A PRNGKey to use for generating the random numbers. |
required |
sample_shape |
Optional[Sequence[int]] |
The shape of the output array. |
None |
mini |
Union[Float, ArrayLike] |
The minimum value of the uniform distribution. |
0.0 |
maxi |
Union[Float, ArrayLike] |
The maximum value of the uniform distribution. |
1.0 |
lower_tail |
Bool |
Whether to generate values from the lower tail of the distribution. |
True |
log_prob |
Bool |
Whether to return the log probability of the generated values. |
False |
dtype |
The dtype of the output. Defaults to jnp.float_. |
<class 'jax.numpy.float64'> |
Returns:
Type | Description |
---|---|
ArrayLike |
An array of random numbers from a uniform distribution. |
Examples:
>>> runif(key, sample_shape=(2, 3))
Array([[0.57450044, 0.09968603, 0.7419659 ],
[0.8941783 , 0.59656656, 0.45325184]], dtype=float32)