Boostrap Function¤
stamox.sample.bootstrap_sample(data: ArrayLike, num_samples: int, *, key: PRNGKeyArray = None) -> ArrayLike
¤
    Generates num_samples bootstrap samples from data with replacement.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
data | 
        array-like | 
        The original data.  | 
        required | 
num_samples | 
        int | 
        The number of bootstrap samples to generate.  | 
        required | 
key | 
        jrandom.KeyArray | 
        A random key array. Defaults to None.  | 
        None | 
      
Returns:
| Type | Description | 
|---|---|
ArrayLike | 
      An array of size   | 
    
Examples:
>>> import jax.numpy as jnp
>>> import jax.random as jrandom
>>> from stamox.functions import bootstrap_sample
>>> data = jnp.arange(10)
>>> key = jrandom.PRNGKey(0)
>>> bootstrap_sample(data, num_samples=3, key=key)
Array([[9, 1, 6, 2, 9, 3, 9, 9, 4, 5],
        [4, 0, 4, 4, 6, 2, 5, 6, 5, 3],
        [7, 6, 9, 0, 0, 7, 0, 5, 8, 4]], dtype=int32)
stamox.sample.bootstrap(data: ArrayLike, call: Callable[..., ~ReturnValue], num_samples: int, *, key: PRNGKeyArray = None) -> PyTree
¤
    Generates num_samples bootstrap samples from data with replacement, and calls call on each sample.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
data | 
        array-like | 
        The original data.  | 
        required | 
call | 
        Callable[..., ReturnValue] | 
        The function to call on each bootstrap sample.  | 
        required | 
num_samples | 
        int | 
        The number of bootstrap samples to generate.  | 
        required | 
key | 
        jrandom.KeyArray | 
        A random key array. Defaults to None.  | 
        None | 
      
Returns:
| Type | Description | 
|---|---|
PyTree | 
      The return value of   | 
    
Examples:
>>> import jax.numpy as jnp
>>> import jax.random as jrandom
>>> from stamox.functions import bootstrap
>>> data = jnp.arange(10)
>>> bootstrap(data, jnp.mean, 3, key=key)
Array([5.7000003, 3.9      , 4.6      ], dtype=float32)