Boostrap Function¤
stamox.sample.bootstrap_sample(data: ArrayLike, num_samples: int, *, key: PRNGKeyArray = None) -> ArrayLike
¤
Generates num_samples
bootstrap samples from data
with replacement.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
array-like |
The original data. |
required |
num_samples |
int |
The number of bootstrap samples to generate. |
required |
key |
jrandom.KeyArray |
A random key array. Defaults to None. |
None |
Returns:
Type | Description |
---|---|
ArrayLike |
An array of size |
Examples:
>>> import jax.numpy as jnp
>>> import jax.random as jrandom
>>> from stamox.functions import bootstrap_sample
>>> data = jnp.arange(10)
>>> key = jrandom.PRNGKey(0)
>>> bootstrap_sample(data, num_samples=3, key=key)
Array([[9, 1, 6, 2, 9, 3, 9, 9, 4, 5],
[4, 0, 4, 4, 6, 2, 5, 6, 5, 3],
[7, 6, 9, 0, 0, 7, 0, 5, 8, 4]], dtype=int32)
stamox.sample.bootstrap(data: ArrayLike, call: Callable[..., ~ReturnValue], num_samples: int, *, key: PRNGKeyArray = None) -> PyTree
¤
Generates num_samples
bootstrap samples from data
with replacement, and calls call
on each sample.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
array-like |
The original data. |
required |
call |
Callable[..., ReturnValue] |
The function to call on each bootstrap sample. |
required |
num_samples |
int |
The number of bootstrap samples to generate. |
required |
key |
jrandom.KeyArray |
A random key array. Defaults to None. |
None |
Returns:
Type | Description |
---|---|
PyTree |
The return value of |
Examples:
>>> import jax.numpy as jnp
>>> import jax.random as jrandom
>>> from stamox.functions import bootstrap
>>> data = jnp.arange(10)
>>> bootstrap(data, jnp.mean, 3, key=key)
Array([5.7000003, 3.9 , 4.6 ], dtype=float32)