Jackknife Function¤
stamox.sample.jackknife_sample(data: ArrayLike) -> ArrayLike
¤
Generates num_samples
jackknife samples from data
with replacement.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
array-like |
The original data. |
required |
Returns:
Type | Description |
---|---|
ArrayLike |
An array of size (len(data)-1, len(data)) containing the jackknife samples. |
Examples:
>>> import jax.numpy as jnp
>>> from stamox.functions import jackknife_sample
>>> data = jnp.arange(3)
>>> jackknife_sample(data)
Array([[1, 2],
[0, 2],
[0, 1]], dtype=int32)
stamox.sample.jackknife(data: ArrayLike, call: Callable[..., ~ReturnValue]) -> PyTree
¤
Computes the jackknife estimate of a given data set.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
ArrayLike |
The data set to be analyzed. |
required |
call |
Callable[..., ReturnValue] |
A function to be applied to each sample. |
required |
Returns:
Type | Description |
---|---|
PyTree |
The jackknife estimate of the data set. |
Examples:
>>> import jax.numpy as jnp
>>> from stamox.functions import jackknife
>>> data = jnp.arange(3)
>>> jackknife(data, lambda x: jnp.mean(x))
Array([1.5, 1. , 0.5], dtype=float32)